NASA Perseverance Makes New Discoveries in Mars’ Jezero Crater

Selfie of perseverance at La Rochette

Using its WATSON camera, NASA’s Perseverance Mars rover took this selfie above a rock nicknamed “Rochette”, on September 10, 2021, the 198th Martian day, or sol, of the mission. Two holes can be seen where the rover used its robotic arm to drill rock cores. Credit: NASA/JPL-Caltech/MSSS

The Mars rover discovered that the floor of Jezero Crater is made up of volcanic rocks that have interacted with water.

WATSON Views Foux

Perseverance took this close-up of a rock target nicknamed “Foux” using its WATSON camera on July 11, 2021, the 139th Martian day, r sol, of the mission. The area within the camera is roughly 1.4 by 1 inches (3.5 centimeters by 2.6 centimeters). Credit: NASA/JPL-Caltech/MSSS

However, igneous rock isn’t ideal for preserving the potential signs of ancient microscopic life Perseverance is searching for, because of how it forms. On the other hand, determining the age of sedimentary rock can be challenging, especially when it contains rock fragments that formed at different times before the rock sediment was deposited. However, sedimentary rock often forms in watery environments suitable for life and is better at preserving ancient signs of life.

That’s why the sediment-rich river delta Perseverance has been exploring since April 2022 is so tantalizing to scientists. The rover has begun drilling and collecting core samples of sedimentary rocks there so that the Mars Sample Return campaign could potentially return them to Earth where they could be studied by powerful lab equipment too large to bring to Mars.

Mysterious Magma-Formed Rocks

A longstanding mystery on Mars is solved in a second paper published in Science. Mars orbiters spotted a rock formation filled with the mineral olivine years ago. Measuring roughly 27,000 square miles (70,000 square kilometers) – nearly the size of South Carolina – this formation extends from the inside edge of Jezero Crater into the surrounding region.

Scientists have offered various theories on why olivine is so plentiful over such a large area of the surface. These include meteorite impacts, volcanic eruptions, and sedimentary processes. Another theory is that the olivine formed deep underground from slowly cooling magma – molten rock – before being exposed over time by erosion.

Perseverance Looks Toward 'Santa Cruz'

NASA’s Perseverance Mars rover looks out at an expanse of boulders on the floor of Jezero Crater in front of a location nicknamed “Santa Cruz” on Feb. 16, 2022, the 353rd Martian day, or sol, of the mission. Credit: NASA/JPL-Caltech/MSSS

Yang Liu of NASA’s Jet Propulsion Laboratory (PIXL, they determined the olivine grains in the area measure 1 to 3 millimeters – much larger than would be expected for olivine that formed in rapidly cooling lava at the planet’s surface.

“This large crystal size and its uniform composition in a specific rock texture require a very slow-cooling environment,” Liu said. “So, most likely, this magma in Jezero wasn’t erupting on the surface.”

Unique Science Tools

The findings of science instruments that helped establish that igneous rocks cover the crater floor are detailed in the two Science Advances papers. The instruments include Perseverance’s SuperCam laser and a ground-penetrating radar called RIMFAX (Radar Imager for Mars’ Subsurface Experiment).

SuperCam is equipped with a rock-vaporizing laser that can zap a target as small as a pencil tip from up to 20 feet (7 meters) away. It analyzes the resulting vapor using a visible-light spectrometer to determine a rock’s chemical composition. During Perseverance’s first 10 months on Mars SuperCam zapped 1,450 points, helping scientists arrive at their conclusion about igneous rocks on the crater floor.

Mars 2020 SuperCam Laser Zapping

Illustration of the Mars Perseverance Rover using its SuperCam instrument to laser zap a rock in order to test what it’s made of. Credit: NASA

In addition, SuperCam used near-infrared light – it’s the first instrument on Mars with that capability – to find that water-altered minerals in the crater floor rocks. However, the alterations weren’t pervasive throughout the crater floor, according to the combination of laser and infrared observations.

“SuperCam’s data suggests that either these rock layers were isolated from Jezero’s lake water or that the lake existed for a limited duration,” said Roger Wiens, SuperCam’s principal investigator at Purdue University and Los Alamos National Laboratory.

RIMFAX marks another first. Although Mars orbiters carry ground-penetrating radars, no spacecraft on the surface of Mars have before Perseverance. Being on the surface, RIMFAX can provide unparalleled detail, and surveyed the crater floor as deep as 50 feet (15 meters).

Its high-resolution “radargrams” show rock layers unexpectedly inclined up to 15 degrees underground. Understanding how these rock layers are ordered can help scientists build a timeline of Jezero Crater’s formation.

“As the first such instrument to operate on the surface of Mars, RIMFAX has demonstrated the potential value of a ground-penetrating radar as a tool for subsurface exploration,” said Svein-Erik Hamran, RIMFAX’s principal investigator at the DOI: 10.1126/sciadv.abo3399

“An olivine cumulate outcrop on the floor of Jezero crater, Mars” by Y. Liu, M. M. Tice, M. E. Schmidt, A. H. Treiman, T. V. Kizovski, J. A. Hurowitz, A. C. Allwood, J. Henneke, D. A. K. Pedersen, S. J. VanBommel, M. W. M. Jones, A. L. Knight, B. J. Orenstein, B. C. Clark, W. T. Elam, C. M. Heirwegh, T. Barber, L. W. Beegle, K. Benzerara, S. Bernard, O. Beyssac, T. Bosak, A. J. Brown, E. L. Cardarelli, D. C. Catling, J. R. Christian, E. A. Cloutis, B. A. Cohen, S. Davidoff, A. G. Fairén, K. A. Farley, D. T. Flannery, A. Galvin, J. P. Grotzinger, S. Gupta, J. Hall, C. D. K. Herd, K. Hickman-Lewis, R. P. Hodyss, B. H. N. Horgan, J. R. Johnson, J. L. Jørgensen, L. C. Kah, J. N. Maki, L. Mandon, N. Mangold, F. M. McCubbin, S. M. McLennan, K. Moore, M. Nachon, P. Nemere, L. D. Nothdurft, J. I. Núñez, L. O’Neil, C. M. Quantin-Nataf, V. Sautter, D. L Shuster, K. L. Siebach, J. I. Simon, K. P. Sinclair, K. M. Stack, A. Steele, J. D. Tarnas, N. J. Tosca, K. Uckert, A. Udry, L. A. Wade, B. P. Weiss, R. C. Wiens, K. H. Williford and M.-P. Zorzano, 25 August 2022, Science.
DOI: 10.1126/science.abo2756

“Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars” by K. A. Farley, K. M. Stack, D. L. Shuster, B. H. N. Horgan, J. A. Hurowitz, J. D. Tarnas, J. I. Simon, V. Z. Sun, E. L. Scheller, K. R. Moore, S. M. McLennan, P. M. Vasconcelos, R. C. Wiens, A. H. Treiman, L. E. Mayhew, O. Beyssac, T. V. Kizovski, N. J. Tosca, K. H. Williford, L. S. Crumpler, L. W. Beegle, J. F. Bell, B. L. Ehlmann, Y. Liu, J. N. Maki, M. E. Schmidt, A. C. Allwood, H. E. F. Amundsen, R. Bhartia, T. Bosak, A. J. Brown, B. C. Clark, A. Cousin, O. Forni, T. S. J. Gabriel, Y. Goreva, S. Gupta, S.-E. Hamran, C. D. K. Herd, K. Hickman-Lewis, J. R. Johnson, L. C. Kah, P. B. Kelemen, K. B. Kinch, L. Mandon, N. Mangold, C. Quantin-Nataf, M. S. Rice, P. S. Russell, S. Sharma, S. Siljeström, A. Steele, R. Sullivan, M. Wadhwa, B. P. Weiss, A. J. Williams, B. V. Wogsland, P. A. Willis, T. A. Acosta-Maeda, P. Beck, K. Benzerara, S. Bernard, A. S. Burton, E. L. Cardarelli, B. Chide, E. Clavé, E. A. Cloutis, B. A. Cohen, A. D. Czaja, V. Debaille, E. Dehouck, A. G. Fairén, D. T. Flannery, S. Z. Fleron, T. Fouchet, J. Frydenvang, B. J. Garczynski, E. F. Gibbons, E. M. Hausrath, A. G. Hayes, J. Henneke, J. L. Jørgensen, E. M. Kelly, J. Lasue, S. Le Mouélic, J. M. Madariaga, S. Maurice, M. Merusi, P.-Y. Meslin, S. M. Milkovich, C. C. Million, R. C. Moeller, J. I. Núñez, A. M. Ollila, G. Paar, D. A. Paige, D. A. K. Pedersen, P. Pilleri, C. Pilorget, P. C. Pinet, J. W. Rice, C. Royer, V. Sautter, M. Schulte, M. A. Sephton, S. K. Sharma, S. F. Sholes, N. Spanovich, M. St. Clair, C. D. Tate, K. Uckert, S. J. VanBommel, A. G. Yanchilina and M.-P. Zorzano, 25 August 2022, Science.
DOI: 10.1126/science.abo2196

“Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars” by Svein-Erik Hamran, David A. Paige, Abigail Allwood, Hans E. F. Amundsen, Tor Berger, Sverre Brovoll, Lynn Carter, Titus M. Casademont, Leif Damsgård, Henning Dypvik, Sigurd Eide, Alberto G. Fairén, Rebecca Ghent, Jack Kohler, Michael T. Mellon, Daniel C. Nunes, Dirk Plettemeier, Patrick Russell, Matt Siegler and Mats Jørgen Øyan, 25 August 2022, Science Advances.
DOI: 10.1126/sciadv.abp8564

More About the Mission

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

Leave a Comment